(1)∵n(n+1)(n+2)=
1
4 [n(n+1)(n+2)(n+3)-(n-1)n(n+1)(n+2)]
∴1×2×3=
1
4 (1×2×3×4-0×1×2×3)
2×3×4=
1
4 (2×3×4×5-1×2×3×4)
…
n(n+1)(n+2)=
1
4 [n(n+1)(n+2)(n+3)-(n-1)n(n+1)(n+2)]
∴1×2×3+2×3×4+…+n(n+1)(n+2)=
1
4 [(1×2×3×4-0×1×2×3)+(2×3×4×5-1×2×3×4)+…+n×(n+1)×(n+2)×(n+3)-(n-1)×n×(n+1)×(n+2)=
1
4 n(n+1)(n+2)(n+3)
(2)利用数学归纳法证:1×2×3+2×3×4+…+n(n+1)(n+2)=
1
4 n(n+1)(n+2)(n+3)
①当n=1时,左边=1×2×3,右边=
1
4 ×1×2×3×4 =1×2×3,左边=右边,等式成立.
②设当n=k(k∈N *)时,等式成立,
即1×2×3+2×3×4+…+k×(k+1)×(k+2)=
k(k+1)(k+2)(k+3)
4 .
则当n=k+1时,
左边=1×2×3+2×3×4+…+k×(k+1)×(k+2)+(k+1)(k+2)(k+3)
=
k(k+1)(k+2)(k+3)
4 +(k+1)(k+2)(k+3)
=(k+1)(k+2)(k+3)(
k
4 +1)
=
(k+1)(k+2)(k+3)(K+4)
4
=
(k+1)(k+1+1)(k+1+2)(k+1+3)
4 .
∴n=k+1时,等式成立.
由①、②可知,原等式对于任意n∈N *成立.