在计算“1×2+2×3+…n(n+1)”时,先改写第k项:

1个回答

  • (1)∵n(n+1)(n+2)=

    1

    4 [n(n+1)(n+2)(n+3)-(n-1)n(n+1)(n+2)]

    ∴1×2×3=

    1

    4 (1×2×3×4-0×1×2×3)

    2×3×4=

    1

    4 (2×3×4×5-1×2×3×4)

    n(n+1)(n+2)=

    1

    4 [n(n+1)(n+2)(n+3)-(n-1)n(n+1)(n+2)]

    ∴1×2×3+2×3×4+…+n(n+1)(n+2)=

    1

    4 [(1×2×3×4-0×1×2×3)+(2×3×4×5-1×2×3×4)+…+n×(n+1)×(n+2)×(n+3)-(n-1)×n×(n+1)×(n+2)=

    1

    4 n(n+1)(n+2)(n+3)

    (2)利用数学归纳法证:1×2×3+2×3×4+…+n(n+1)(n+2)=

    1

    4 n(n+1)(n+2)(n+3)

    ①当n=1时,左边=1×2×3,右边=

    1

    4 ×1×2×3×4 =1×2×3,左边=右边,等式成立.

    ②设当n=k(k∈N *)时,等式成立,

    即1×2×3+2×3×4+…+k×(k+1)×(k+2)=

    k(k+1)(k+2)(k+3)

    4 .

    则当n=k+1时,

    左边=1×2×3+2×3×4+…+k×(k+1)×(k+2)+(k+1)(k+2)(k+3)

    =

    k(k+1)(k+2)(k+3)

    4 +(k+1)(k+2)(k+3)

    =(k+1)(k+2)(k+3)(

    k

    4 +1)

    =

    (k+1)(k+2)(k+3)(K+4)

    4

    =

    (k+1)(k+1+1)(k+1+2)(k+1+3)

    4 .

    ∴n=k+1时,等式成立.

    由①、②可知,原等式对于任意n∈N *成立.