(1)证明:连接OD,
∵OA=OD,
∴∠OAD=∠ODA.(1分)
∵AD平分∠BAC,
∴∠OAD=∠CAD.(2分)
∴OD ∥ AC.(3分)
∵∠C=90°,
∴OD⊥BC于D.
∴BC是⊙O的切线.(4分)
(2)过D作DG⊥AB于G,
∴DG=DC,AG=AC.(5分)
设DC=x,则BD=16-x,BG=8,
∴8 2+x 2=(16-x) 2
∴x=6.(6分)
设半径为r,则(12-r) 2+6 2=r 2
∴r=7.5.
∴EG=3.(7分)
连接DE,DF,易证△DGE≌△DCF,
∴CF=3,
∴AF=9.(8分)
(2)证法2:(如图)连OD,OF,作OM⊥AF于M;
设DC=x,(x的求法同于前面)
∴x=6;
∵OM⊥AF,OD⊥BC,则MC=OD=R,OM=DC=6,AM=12-R,
∴R 2=(12-R) 2+6 2,
∴R=7.5,
∴AM=12-7.5=4.5,
∴AF=2AM=9.
证法3:(如图)连EF,与OD交于H点,
设DC=x
∴x=6,(求法同前);
在Rt△BOD中,BO=20-R,OD=R,BD=10;
∴(20-R) 2=R 2+10 2,
∴R=7.5,
∴AE=15;
∵EF=2FH=2CD=12,
在Rt△EAF中,AF 2=AE 2-EF 2=15 2-12 2=81,
∴AF=9.
证法4,(如图)连EF;设DC=x,
∴x=6,(求法同前)
∴EF=2FH=2CD=12;
∵S △BEF+S 梯形EFCB=S △ABC,
1
2 EF•BF+
1
2 (EF+BC)•(AC-AF)=
1
2 AC•BC ,
∴AF=9.
1年前
5