Sn+1=2Sn + n + 5
取n-1,得Sn=2Sn-1 + n + 4(在n大于等于2时)
相减得a(n+1)=2an +1
a(n+1) + 1=2(an+1)
a(n+1)+1 / an+1=2 an+1为等比数列
.
a3+1 / a2+1=2
a2+1 / a1+1=2 叠乘消去得
a(n+1)+1 / a1+1=2^n
a(n+1)=6*2^n - 1
an=6*2^n-1 - 1 检验:当n=1时a1=5,成立
Sn+1=2Sn + n + 5
取n-1,得Sn=2Sn-1 + n + 4(在n大于等于2时)
相减得a(n+1)=2an +1
a(n+1) + 1=2(an+1)
a(n+1)+1 / an+1=2 an+1为等比数列
.
a3+1 / a2+1=2
a2+1 / a1+1=2 叠乘消去得
a(n+1)+1 / a1+1=2^n
a(n+1)=6*2^n - 1
an=6*2^n-1 - 1 检验:当n=1时a1=5,成立