解题思路:由函数y=g(x)的图象与y=ex的图象关于直线y=x对称,则y=g(x)的图象与y=ex互为反函数,易得y=g(x)的解析式,再由函数y=f(x)的图象与y=g(x)的图象关于y轴对称,进而可以得到函数y=f(x)的解析式,由函数y=f(x)的解析式构造方程f(m)=-1,解方程即可求得m的值.
∵函数y=g(x)的图象与y=ex的图象关于直线y=x对称
∴函数y=g(x)与y=ex互为反函数
则g(x)=lnx,
又由y=f(x)的图象与y=g(x)的图象关于y轴对称
∴f(x)=ln(-x),
又∵f(m)=-1
∴ln(-m)=-1,
m=−
1
e
故选B.
点评:
本题考点: 函数的图象与图象变化.
考点点评: 互为反函数的两个函数图象关于线y=x对称,有f(x)的图象上有(a,b)点,则(b,a)点一定在其反函数的图象上;
如果两个函数图象关于 X轴对称,有f(x)的图象上有(a,b)点,则(a,-b)点一定在函数g(x)的图象上;
如果两个函数图象关于 Y轴对称,有f(x)的图象上有(a,b)点,则(-a,b)点一定在函数g(x)的图象上;
如果两个函数图象关于原点对称,有f(x)的图象上有(a,b)点,则(-a,-b)点一定在函数g(x)的图象上.