设AB=a BE=DF=b,
EF²=a²+b²=﹙a-b﹚²+﹙a-b﹚² 得到a²+b²-4ab=0 a²+b²=4ab
S△ABE+S△ADF=ab.
S△CEF=(a-b)²/2=[a²+b²-2ab]/2=[4ab-2ab]/2=ab=S△ABE+S△ADF
设AB=a BE=DF=b,
EF²=a²+b²=﹙a-b﹚²+﹙a-b﹚² 得到a²+b²-4ab=0 a²+b²=4ab
S△ABE+S△ADF=ab.
S△CEF=(a-b)²/2=[a²+b²-2ab]/2=[4ab-2ab]/2=ab=S△ABE+S△ADF