f(x) - g(x) = x^2 - (1/x) (1)
因为f(x)为奇函数,g(x)为偶函数,则
f(-x) - g(-x) = (-x)^2 - (-1/x) (2)
即
-f(x) - g(x) = (x)^2 + (1/x) (3)
(1) 、(3)联立解得
f(x) = - 1/x g(x) = -x^2
从而f(1) = -1,g(3) = -9,g(-2) = -4
所以
f(1)> g(-2) > g(3)
f(x) - g(x) = x^2 - (1/x) (1)
因为f(x)为奇函数,g(x)为偶函数,则
f(-x) - g(-x) = (-x)^2 - (-1/x) (2)
即
-f(x) - g(x) = (x)^2 + (1/x) (3)
(1) 、(3)联立解得
f(x) = - 1/x g(x) = -x^2
从而f(1) = -1,g(3) = -9,g(-2) = -4
所以
f(1)> g(-2) > g(3)