微积分的公式

1个回答

  • 微积分公式

    Dx sin x=cos x

    cos x = -sin x

    tan x = sec2 x

    cot x = -csc2 x

    sec x = sec x tan x

    csc x = -csc x cot x

    sin x dx = -cos x + C

    cos x dx = sin x + C

    tan x dx = ln |sec x | + C

    cot x dx = ln |sin x | + C

    sec x dx = ln |sec x + tan x | + C

    csc x dx = ln |csc x - cot x | + C

    sin-1(-x) = -sin-1 x

    cos-1(-x) = - cos-1 x

    tan-1(-x) = -tan-1 x

    cot-1(-x) = - cot-1 x

    sec-1(-x) = - sec-1 x

    csc-1(-x) = - csc-1 x

    Dx sin-1 ()=

    cos-1 ()=

    tan-1 ()=

    cot-1 ()=

    sec-1 ()=

    csc-1 (x/a)=

    sin-1 x dx = x sin-1 x++C

    cos-1 x dx = x cos-1 x-+C

    tan-1 x dx = x tan-1 x- ln (1+x2)+C

    cot-1 x dx = x cot-1 x+ ln (1+x2)+C

    sec-1 x dx = x sec-1 x- ln |x+|+C

    csc-1 x dx = x csc-1 x+ ln |x+|+C

    sinh-1 ()= ln (x+) xR

    cosh-1 ()=ln (x+) x≥1

    tanh-1 ()=ln () |x| 1

    sech-1()=ln(+)0≤x≤1

    csch-1 ()=ln(+) |x| >0

    Dx sinh x = cosh x

    cosh x = sinh x

    tanh x = sech2 x

    coth x = -csch2 x

    sech x = -sech x tanh x

    csch x = -csch x coth x

    sinh x dx = cosh x + C

    cosh x dx = sinh x + C

    tanh x dx = ln | cosh x |+ C

    coth x dx = ln | sinh x | + C

    sech x dx = -2tan-1 (e-x) + C

    csch x dx = 2 ln || + C

    duv = udv + vdu

    duv = uv = udv + vdu

    → udv = uv - vdu

    cos2θ-sin2θ=cos2θ

    cos2θ+ sin2θ=1

    cosh2θ-sinh2θ=1

    cosh2θ+sinh2θ=cosh2θ

    Dx sinh-1()=

    cosh-1()=

    tanh-1()=

    coth-1()=

    sech-1()=

    csch-1(x/a)=

    sinh-1 x dx = x sinh-1 x-+ C

    cosh-1 x dx = x cosh-1 x-+ C

    tanh-1 x dx = x tanh-1 x+ ln | 1-x2|+ C

    coth-1 x dx = x coth-1 x- ln | 1-x2|+ C

    sech-1 x dx = x sech-1 x- sin-1 x + C

    csch-1 x dx = x csch-1 x+ sinh-1 x + C

    sin 3θ=3sinθ-4sin3θ

    cos3θ=4cos3θ-3cosθ

    →sin3θ= (3sinθ-sin3θ)

    →cos3θ= (3cosθ+cos3θ)

    sin x = cos x =

    sinh x = cosh x =

    正弦定理:= ==2R

    余弦定理: a2=b2+c2-2bc cosα

    b2=a2+c2-2ac cosβ

    c2=a2+b2-2ab cosγ

    sin (α±β)=sin α cos β ± cos α sin β

    cos (α±β)=cos α cos β sin α sin β

    2 sin α cos β = sin (α+β) + sin (α-β)

    2 cos α sin β = sin (α+β) - sin (α-β)

    2 cos α cos β = cos (α-β) + cos (α+β)

    2 sin α sin β = cos (α-β) - cos (α+β)

    sin α + sin β = 2 sin (α+β) cos (α-β)

    sin α - sin β = 2 cos (α+β) sin (α-β)

    cos α + cos β = 2 cos (α+β) cos (α-β)

    cos α - cos β = -2 sin (α+β) sin (α-β)

    tan (α±β)=, cot (α±β)=

    ex=1+x+++…++ …

    sin x = x-+-+…++ …

    cos x = 1-+-+++

    ln (1+x) = x-+-+++

    tan-1 x = x-+-+++

    (1+x)r =1+rx+x2+x3+ -1= n

    = n (n+1)

    = n (n+1)(2n+1)

    = [ n (n+1)]2

    Γ(x) = x-1e-t dt = 22x-1dt = x-1 dt

    β(m, n) =m-1(1-x)n-1 dx=22m-1x cos2n-1x dx = dx