把抛物面方程改写成隐函数的形式:F(x,y,z)=z-x²-y²-2=0
∂F/∂x=-2x,(∂F/∂x)∣(x=2)=-4;∂F/∂y=-2y,(∂F/∂y)∣(y=1)=-2;∂F/∂z=1;(∂F/∂z)∣(z=7)=1;
故过Po的切平面方程为:-4(x-2)-2(y-1)+(z-7)=0,即4x+2y-z-3=0为所求.
过点Po的法线方程为:(x-2)/(-4)=(y-1)/(-2)=(z-7)/1.
把抛物面方程改写成隐函数的形式:F(x,y,z)=z-x²-y²-2=0
∂F/∂x=-2x,(∂F/∂x)∣(x=2)=-4;∂F/∂y=-2y,(∂F/∂y)∣(y=1)=-2;∂F/∂z=1;(∂F/∂z)∣(z=7)=1;
故过Po的切平面方程为:-4(x-2)-2(y-1)+(z-7)=0,即4x+2y-z-3=0为所求.
过点Po的法线方程为:(x-2)/(-4)=(y-1)/(-2)=(z-7)/1.