1、令f(x)=x/√(x^2+1)
f'(x)=[√(x^2+1)-x*(1/2)*2x/√(x^2+1)]/(x^2+1)
=(x^2+1-x^2)/(x^2+1)√(x^2+1)
=1/(x^2+1)√(x^2+1)
显然f'(x)>0恒成立,所以f(x)在R上递增.
如此,只能用求极限了:
x趋向于负无穷时,limf(x)=-1;
x趋向于正无穷时,limf(x)=1;
所以,f(x)的值域为[-1,1]
2、y=x/√(x^2+1)
=>y²=x²/(1+x²)
=>(y²-1)x²+y²=0
=>Δ=-4(y²-1)y²≥0
=>0≤y²≤1
=>-1≤y≤1