1.abc≠0说明a,b,c没有一个是0,但a+b+c=0,所以a=b=c=0
所以a²/(bc)+b²/(ac)+c²/(ab)=0
2.∵a^2/(a^4+a^2+1)=1/24
∴(a^4+a^2+1)/a^2=24
a^2+1+(1/a^2)=24
a^2+2(a)×(1/a)+(1/a^2)=25
[a+(1/a)]^2=25
a+(1/a)=5 应该有a>0的条件
∵b^3/(b^6+b^2+1)=1/19
∴(b^6+b^3+1)/b^3=19
b^3+(1/b^3)+1=19
[b+(1/b)][b^-1+(1/b^)]=18
[b+(1/b)]{[b+(1/b)]^-3]=18
b+(1/b)=u
u(u^-3)=18
u^3-3u-18=0
u^3-3u^+3u^-3u-18=0
(u^)(u-3)+3(u^-u-6)=0
(u^)(u-3)+3(u+2)(u-3)=0
(u-3)(u^+3u+6)=0
∵(u^+3u+6)=0时 △=9-24<0无实数根
∴u=3=0 u=3
∴ab/(a^2+a+1)(b^2+b+1)
=1/[a+(1/a)+1][b+(1/b)+1]
=1/(6×4)=1/24