证明:①f(x)=lnx,f′(ξ)= 1 ξ ,x<ξ<y …(1分)(注1:只要构造出函数f(x)=lnx即给1分)...
(1)定理:若函数f(x)的图象在区间[a,b]上连续,且在(a,b)内可导,则至少存在一点ξ∈(a,b),使得f(b)
1个回答
相关问题
-
设f(x)在[a,b]上连续,在(a,b)内可导,则在(a,b)内至少存在一点ξ,使得f(ξ)−f(a)b−ξ=f′(ξ
-
设f(x)在闭区间[a,b] 上连续,在开区间[a,b] 内可导,且f(a)=0 ,证明存在ξ∈(a,b) ,使得 f'
-
设f(x)在[a,b]上连续,在(a,b)内可导,且f(a)=f(b)=0.求证:存在ξ∈(a,b)使得f'(ξ)+f'
-
设函数f(x)在[a,b]上连续,在(a,b)内可导,且f′(x)≠0.试证存在ξ、η∈(a,b),使得f′(ξ)f′(
-
设函数f(x)在区间[a,b]上连续,且f(a)b.证明:至少存在一点ξ∈(a,b),使得……高等数学(上)…
-
设f(x)在[a,b]上连续,且f(a)<a,f(b)>b,证明:至少存在一点ξ∈(a,b),使得f(ξ)=ξ.
-
设f(x),g(x)在[a,b]上连续,在(a,b)内可导,且f(a)=f(b)=0,证明至少存在一点ξ∈(a,b).
-
设f(x)在[a,b]上连续,在(a,b)内可导,且f(a)=f(b)=1,试证存在ξ、η∈(a,b),使得eξ-η[f
-
f(x)在(a,b)内连续且可导 ,且f(a)=f(b)=0,证明在区间(a,b)至少存在一点r,使得f'(r)=f(r
-
设F(x)在区间(a,b)连续,(a,b)可导.证明:在(a,b)内至少存在一点E,使得 [bF(b)-aF(a)]/(