把下列各式因式分解1、(z^2-x ^2-y∧2)^ 2-4x^ 2×y∧22、x^ 3+12x-6x^2-83、x ^

2个回答

  • 1.用平方差公式:

    (z²-x²-y²)²-4x²y²

    =[(z²-x²-y²)-2xy][(z²-x²-y²+2xy]

    =[z²-(x+y)²][z²-(x-y)²]

    =(z-x-y)(z+x+y)(z-x+y)(z+x-y)

    2.x³+12x-6x²-8

    =x³-6x²+12x-8,可用多项式定理

    =(x)³-3(x)²(2)+3(x)(2)²-(2)³

    =(x-2)³

    3.x²-4xy+4y²-x+2y-2

    =(x-2y)²-(x-2y)-2

    =u²-u-2,u=x-2y,用十字相乘法

    =(u-2)(u+1)

    =(x-2y-2)(x-2y+1)

    4.x³+3x²-4

    设f(x)=x³+3x²-4,常数-4的因子为{±1,±2,±4}

    ∵f(1)=1+3-4=0

    ∴(x-1)是其中一个因式,

    用综合除法,(x³+3x²-4)/(x-1)化简得:

    f(x)=(x-1)(x²+4x+4)

    =(x-1)(x+2)²

    ∴x³+3x²-4=(x-1)(x+2)²