(1-x)(1+x)=1-x²
(1-x)(1+x+x²)=1-x³
(1-x)(1+x+x²+x³)=1-x^4
·······
∴(1-x)(1+x+x²+x³+···+2^n)=1-x^(n+1)→1+x+x²+x³+···+2^n=[1-x^(n+1)]/(1-x)
∴
(1-2)(1+2+2^2+2^3+2^4)=1-2^5=-31
2+2²+2³+2^4+2^5+···+2^n=[1-2^(n+1)]/(1-2)=2^(n+1)-1
(a-1)(a^49+a^48+a^47+···+a³+a²+a)
=-(1-a)(a+a²+a³+···+a^47+a^48+a^49)
=-[1-a^(49+1)]
=a^50-1