当 x → -∞ 时,y = [x^2-(x^2-x+1)] / [x-√(x^2-x+1)] = (x-1) / [x-√(x^2-x+1)] ,
分子分母同除以 x 得 y = (1-1/x) / (1+√(1-1/x+1/x^2)] → (1-0)/(1+1) = 1/2 ,
所以,x 趋于负无穷时,水平渐近线方程为 y = 1/2 .
当 x → -∞ 时,y = [x^2-(x^2-x+1)] / [x-√(x^2-x+1)] = (x-1) / [x-√(x^2-x+1)] ,
分子分母同除以 x 得 y = (1-1/x) / (1+√(1-1/x+1/x^2)] → (1-0)/(1+1) = 1/2 ,
所以,x 趋于负无穷时,水平渐近线方程为 y = 1/2 .