已知a,b属于R,圆C1:x^2+y^2-4x+2y-a^2+5=0与圆C2:x^2+y^2-(2b-10)x-2by+

1个回答

  • 答:

    依据题意知道:

    x1²+y1²-4x1+2y1-a²+5=0……………………………………(1)

    x1²+y1²-(2b-10)x1-2by1+2b²-10b+16=0……………………(2)

    x2²+y2²-4x2+2y2-a²+5=0………………………………………(3)

    x2²+y2²-(2b-10)x2-2by2+2b²-10b+16=0……………………(4)

    由(1)减去(3)得:

    (x1-x2)(x1+x2)+(y1-y2)(y1+y2)-4(x1-x2)+2(y1-y2)=0………………(5)

    由(2)减去(4)得:

    (x1-x2)(x1+x2)+(y1-y2)(y1+y2)-(2b-10)(x1-x2)-2b(y1-y2)=0…………(6)

    由(5)减去(6)得:

    (b-7)*(x1-x2)+(1+b)(y1-y2)=0………………………………………………(7)

    因为:(x1-x2)/(y1-y2)+(y1+y2)/(x1+x2)=0

    所以:(b+1)/(7-b)+(y1+y2)/(x1+x2)=0……………………………………(8)

    由(5)得:

    (x1-x2)(x1+x2-4)+(y1-y2)(y1+y2+2)=0……………………………………(9)

    由(7)、(8)和(9)得:

    (x1-x2)/(y1-y2)=(1+b)/(7-b)=(y1+y2+2)/(4-x1-x2)=-(y1+y2)/(x1+x2)

    令y1+y2=n,x1+x2=n,上式化为:

    (1+b)/(7-b)=(n+2)/(4-m)=-n/m

    解得:b=-9,m=4,n=-2

    所以:b=-9