∵AB=BC=CD=DE=EF
∴∠A=∠BCA
∠CBD=∠CDB=∠A+∠ACB=2∠A
∠DCE=∠DEC=∠A+∠CDB=3∠A
∠EDF=∠EFD=∠A+∠DEC=4∠A
∵∠AEF=90°
∴∠A+∠EFD=90°
即∠A+4∠A=90°
∵∠A=18°
∵AB=BC=CD=DE=EF
∴∠A=∠BCA
∠CBD=∠CDB=∠A+∠ACB=2∠A
∠DCE=∠DEC=∠A+∠CDB=3∠A
∠EDF=∠EFD=∠A+∠DEC=4∠A
∵∠AEF=90°
∴∠A+∠EFD=90°
即∠A+4∠A=90°
∵∠A=18°