(1)f1(0)=2,a1=
f1(0)−1
f1(0)+2=
1
4,f2(0)=
2
3,a2=−
1
8,f3(0)=
6
5,a3=
1
16.fn+1(0)=
2
1+fn(0)⇒an+1=
fn+1(0)−1
fn+1(0)+2=
2
1+fn(0)−1
2
1+fn(0)+2=
1−fn(0)
4+2fn(0)=−
1
2an
∴{an}是首项为[1/4],公比为−
1
2的等比数列,
∴an=
1
4(−
1
2)n−1=(−
1
2)n+1.
(2)∵S2n=a1+2a2+…+2na2n,−
1
2S2n=a2+2a3+…(2n−1)a2n−na2n,
∴S2n=
1
9(1−
3n+1
4n),
∴S2n>
n4−3n−1
9n4⇔n4<4