已知直线x+y=1,过双曲线x²/a²-y²/b²=1(a>0,b>0)交于两点M,N,以MN为直径做圆
过圆点,求1/a²-1/b²的值.
将直线方程y=1-x代入双曲线方程得b²x²-a²(1-x)²-a²b²=0
展开得(b²-a²)x²+2a²x-a²(1+b²)=0;设M(x₁,y₁),N(x₂,y₂);
则x₁+x₂=-2a²/(b²-a²)=2a²/(a²-b²);
x₁x₂=-a²(1+b²)/(b²-a²)=a²(1+b²)/(a²-b²);
y₁y₂=(1-x₁)(1-x₂)=1-(x₁+x₂)+x₁x₂=1-2a²/(a²-b²)+a²(1+b²)/(a²-b²)
=b²(a²-1)/(a²-b²)
以MN为直径的园过原点,故OM⊥ON,即有:
OM•ON=x₁x₂+y₁y₂=a²(1+b²)/(a²-b²)+b²(a²-1)/(a²-b²)=(a²+2b²a²-b²)/(a²-b²)=0
故得a²+2a²b²-b²=0,两边同除以a²b²得:
1/b²+2-1/a²=0
故得1/a²-1/b²=2