A1+A(2n+1)=2A1+2nd=2A(n+1)=B1+B(2n+1)=B1+B1×q^(2n)=B1(1+q^(2n))
2B(n+1)=2B1×q^n
比较A(n+1)与B(n+1)的大小,即比较1+q^(2n)与2q^n的大小
1+q^(2n)-2q^n=(1-q^n)^2>=0
A(n+1)>=B(n+1)
当q=1时,此时d=0,上式等号成立.
A1+A(2n+1)=2A1+2nd=2A(n+1)=B1+B(2n+1)=B1+B1×q^(2n)=B1(1+q^(2n))
2B(n+1)=2B1×q^n
比较A(n+1)与B(n+1)的大小,即比较1+q^(2n)与2q^n的大小
1+q^(2n)-2q^n=(1-q^n)^2>=0
A(n+1)>=B(n+1)
当q=1时,此时d=0,上式等号成立.