证明:作CM⊥AC交AF延长线于M.
∵∠BAD=∠AGB=90°
∴∠ABD+∠BAF=∠BAF+∠CAM=90°
∴∠ABD=∠CAM
∵AB=CA ∠BAD=∠ACM=90°
∴△BAD≌△ACM
∴∠1=∠M AD=CM
∵AD=CE
∴CE=CM
∵AB=AC ∠BAC=90°
∴∠ABC=∠ACB=45°
∴∠MCF=∠ACM-∠ACB=∠ECF=45°
∵CF=CF
∴△MCF≌△ECF
∴∠M=∠2
∴∠1=∠2
证明:作CM⊥AC交AF延长线于M.
∵∠BAD=∠AGB=90°
∴∠ABD+∠BAF=∠BAF+∠CAM=90°
∴∠ABD=∠CAM
∵AB=CA ∠BAD=∠ACM=90°
∴△BAD≌△ACM
∴∠1=∠M AD=CM
∵AD=CE
∴CE=CM
∵AB=AC ∠BAC=90°
∴∠ABC=∠ACB=45°
∴∠MCF=∠ACM-∠ACB=∠ECF=45°
∵CF=CF
∴△MCF≌△ECF
∴∠M=∠2
∴∠1=∠2