解题思路:(1)分析抛物线过两点,由待定系数求出抛物线解析式;
(2)根据D、E中点坐标在直线BC上,求出D点关于直线BC对称点的坐标;
(3)有两种方法:法一作辅助线PF⊥AB于F,DE⊥BC于E,根据几何关系,先求出tan∠PBF,再设出P点坐标,根据几何关系解出P点坐标;法二过点D作BD的垂线交直线PB于点Q,过点D作DH⊥x轴于H.过Q点作QG⊥DH于G,由角的关系,得到△QDG≌△DBH,再求出直线BP的解析式,解出方程组从而解出P点坐标.
(1)∵抛物线y=ax2+bx-4a经过A(-1,0)、C(0,4)两点,
∴
a−b−4a=0
−4a=4,
解得
a=−1
b=3,
∴抛物线的解析式为y=-x2+3x+4;
(2)∵点D(m,m+1)在抛物线上,
∴m+1=-m2+3m+4,
即m2-2m-3=0
∴m=-1或m=3
∵点D在第一象限
∴点D的坐标为(3,4)
由(1)知OC=OB
∴∠CBA=45°
设点D关于直线BC的对称点为点E
∵C(0,4)
∴CD∥AB,且CD=3
∴∠ECB=∠DCB=45°
∴E点在y轴上,且CE=CD=3
∴OE=1
∴E(0,1)
即点D关于直线BC对称的点的坐标为(0,1);
(3)方法一:作PF⊥AB于F,DE⊥BC于E,
由(1)有:OB=OC=4
∴∠OBC=45°
∵∠DBP=45°
∴∠CBD=∠PBA
∵C(0,4),D(3,4)
∴CD∥OB且CD=3
∴∠DCE=∠CBO=45°
∴DE=CE=
3
2
2
∵OB=OC=4
∴BC=4
2
∴BE=BC-CE=
5
2
2
∴tan∠PBF=tan∠CBD=
点评:
本题考点: 二次函数综合题.
考点点评: 此题考查传统的待定系数求函数解析式,第二问考查点的对称问题,作合适的辅助线,根据垂直和三角形全等来求P点坐标.