两道关于积分的证明题1、证明∫0到π(sin x)^ndx=2倍∫0到π/2 (sin x)^ndx2、证明:连续函数f

1个回答

  • ∫0到π(sin x)^ndx=∫0到π/2 (sin x)^ndx+∫π/2到π (sin x)^ndx

    根据定理,f(x)在[0,1]连续,∫0到π/2f(sinx)dx=∫0到π/2f(cos)dx

    ∫π/2到π (sin x)^ndx=∫0到π/2 (sin( x+π/2))^ndx=∫0到π/2(cos x)^ndx=∫0到π/2 (sin x)^ndx

    因此∫0到π(sin x)^ndx=∫0到π/2 (sin x)^ndx+∫π/2到π (sin x)^ndx=2*∫0到π/2 (sin x)^ndx

    2、

    续函数f(x)是偶函数f(t)=f(-t)

    g(x)=∫0到xf(t)dt

    g(-x)=∫0到(-x)f(t)dt=∫0到xf(-t)d(-t)=-∫0到xf(t)d(t)=-g(x)

    所以g(x)为奇函数