设椭圆的标准方程为x^2/a^2+y^2/b^2=1
将点P(√6,1),点Q(√2,-√3)代入,
可得:6/a^2+b^2=1,2/a^2+3/b^2=1
化简:a^2+6b^2=6 ① 3a^2+2b^2=6②
①乘以3,可得:3a^2+18b^2=18 ③
③-④可得:16b^2=12
解得:b^2=3/4
将b^2=3/4代入6/a^2+b^2=1,
则3/4*6+a^2=6 9/2
解得:a^2=3/2
则将a^2=3/2,b^2=3/4代入原方程,得到
x^2/(3/2)+y^2/(3/4)=1
2/3x^2+4/3y^2=1
则过点P和点Q的椭圆的标准方程为:2/3x^2+4/3y^2=1