f(x)=2cos2x+sinx^2
=2(1-2sinx^2)+sinx^2
=-3sinx^2+2
f(π/3)=-3[sin(π/3)]^2+2
=-3x3/4+2
=-1/4
(2)求f(x)的最大值和最小值.
易知当sinx=0时有最大值为,2
当sinx=1或-1时有最小值为,-1
f(x)=2cos2x+sinx^2
=2(1-2sinx^2)+sinx^2
=-3sinx^2+2
f(π/3)=-3[sin(π/3)]^2+2
=-3x3/4+2
=-1/4
(2)求f(x)的最大值和最小值.
易知当sinx=0时有最大值为,2
当sinx=1或-1时有最小值为,-1