1/(x+1)(x+2)+1/(x+2)(x+3)+…+1/(x+2001)(x+2002)=2001/3x+6006

4个回答

  • 1/(x+1)(x+2)+1/(x+2)(x+3)+…+1/(x+2001)(x+2002)=2001/(3x+6006)

    1/(x+1)-1/(x+2)+1/(x+2)-1/(x+3)+…+1/(x+2001)-1/(x+2002)=2001/(3x+6006)

    1/(x+1)-1/(x+2002)=2001/(3x+6006)

    2001/(x+1)(x+2002)=2001/(3x+6006)

    1/(x+1)(x+2002)=1/(3x+6006)

    (x+1)(x+2002)=3x+6006

    x²+2003x+2002=3x+6006

    x²+2000x-4004=0

    (x+2002)(x-2)=0

    x=-2002,x=2

    经检验x=-2002是增根,x=2是原方程的根