由于an=a1+(n-1)d
sin(an)=sin(a1+(n-1)d)
=sina1cos[(n-1)d]+cosa1sin[(n-1)d]
sin[a(n+1)]-sin(an)
=sina1{cos[(n-1)d]-cos(nd)}+cosa1{sin[(n-1)d]-sin(nd)}
=(q-1)sin(an)
=(q-1)sina1cos[(n-1)d]+(q-1)cosa1sin[(n-1)d]
则有:
cos[(n-1)d]-cos(nd)=cos(nd)(cosd-1)+sin(nd)sind=(q-1)cos[(n-1)d]……①
sin[(n-1)d]-sin(nd)=sin(nd)(cosd-1)-cos(nd)sind=(q-1)sin[(n-1)d]……②
①-②:化简
[cos(nd)-sin(nd)]/(2-q)=cosd[cos(nd)-sin(nd)]+sind[cos(nd)+sin(nd)]
又由于等式左边=cos[(n-1)d]-sin[(n-1)d]
令bn=cos(nd)-sin(nd)
则有:bn=(2-q)b(n-1)为公比是(2-q)的等比数列
由于数列-1≤{sin an}≤1,是一个有界数列
所以-1≤q≤1且q≠0
又由于-√2≤bn≤√2 ,也是有界数列
所以-1≤2-q≤1且2-q≠0
故q=1
d=2kπ k属于非零整数