解题思路:根据角平分线的定义可得∠OBC=[1/2]∠ABC,∠OCB=[1/2]∠ACB,然后表示出∠OBC+∠OCB,再根据三角形的内角和等于180°列式整理即可得证.
证明:∵∠ABC与∠ACB的平分线相交于点O,
∴∠OBC=[1/2]∠ABC,∠OCB=[1/2]∠ACB,
∴∠OBC+∠OCB=[1/2](∠ABC+∠ACB),
在△OBC中,∠BOC=180°-(∠OBC+∠OCB)
=180°-[1/2](∠ABC+∠ACB)
=180°-[1/2](180°-∠A)
=90°+[1/2]∠A,
即:∠BOC=90°+[1/2]∠A.
点评:
本题考点: 三角形内角和定理.
考点点评: 本题考查了三角形的内角和定理,角平分线的定义,整体思想的利用是解题的关键.