设G(x)=∫(x^2+1)/(x^4+1)dx,倒代换x=1/t之后,虽然有
∫(x^2+1)/(x^4+1)dx=-∫(t^2+1)/(t^4+1)dt
但左边积分号中的t是绝对不能换成x的,这不是定积分,这里只意味着
G(x)=-G(t)=-G(1/x)罢了,这只是原函数G(x)的某个性质
设G(x)=∫(x^2+1)/(x^4+1)dx,倒代换x=1/t之后,虽然有
∫(x^2+1)/(x^4+1)dx=-∫(t^2+1)/(t^4+1)dt
但左边积分号中的t是绝对不能换成x的,这不是定积分,这里只意味着
G(x)=-G(t)=-G(1/x)罢了,这只是原函数G(x)的某个性质