dy/dx+y/(xlnx)=1 为一阶线性微分方程,则
y=e^[-∫dx/(xlnx)]{∫1*e^[∫dx/(xlnx)]dx+C}
= (1/lnx)(∫lnxdx+C) = (1/lnx)(xlnx -x+C)
= x+(C-x)/lnx.
dy/dx+y/(xlnx)=1 为一阶线性微分方程,则
y=e^[-∫dx/(xlnx)]{∫1*e^[∫dx/(xlnx)]dx+C}
= (1/lnx)(∫lnxdx+C) = (1/lnx)(xlnx -x+C)
= x+(C-x)/lnx.