设u=x+y,v=xy,
w=[x+1/(2y)]^2+[y+1/(2x)]^2
=x^2+x/y+1/(4y^2)+y^2+y/x+1/(4x^2)
=(x^2+y^2)[1+1/(xy)+1/(2xy)^2]
=(u^2-2v)[1+1/v+1/(4v^2)]
=(u^2-2v)[1+1/(2v)]^2,
0=4,
当u^2=2,v=1/2时取等号,
∴w的最小值是4,为所求.
设u=x+y,v=xy,
w=[x+1/(2y)]^2+[y+1/(2x)]^2
=x^2+x/y+1/(4y^2)+y^2+y/x+1/(4x^2)
=(x^2+y^2)[1+1/(xy)+1/(2xy)^2]
=(u^2-2v)[1+1/v+1/(4v^2)]
=(u^2-2v)[1+1/(2v)]^2,
0=4,
当u^2=2,v=1/2时取等号,
∴w的最小值是4,为所求.