设直线AB:y=kx+1 (k不等于0),
则直线CD:y=-1/k+1
上述两直线分别与椭圆方程联立,
可得x(A)=-(2(a^2)k)/(1+(a^2)(k^2)) ,
x(C)=(2(a^2)k)/((a^2)+(k^2))
所以abs(AB)=((2(a^2)k)/(1+(a^2)(k^2)))*sqrt(1+k^2) ,
abs(BC)=((2(a^2))/((a^2)+(k^2)))*sqrt(1+k^2) ,
令 abs(AB)=abs(BC),
得到一个关于k的方程(k-1)((k^2)-((a^2)-1)k+1)=0 .k=1,或((k^2)-((a^2)-1)k+1)=0 ,
Δ=((a^2)-1)-4 (a>1) .
令Δ>0得a>sqrt(3);
令Δ=0得a=sqrt(3);
令Δ