见图
定积分的证明设函数f(x)在[a,b]上连续且单调递增,求证:∫[b,a] xf(x)dx≥[(a+b)/2]∫[b,a
1个回答
相关问题
-
设函数f(x)在【a,b】上连续且单调增加,求证∫[a ,b] xf(x)dx >=a+b/2∫[a ,b] f(x)d
-
求定积分做法设f(x)在区间[a,b]上连续,且f(x)>0,证明在a到b的积分f(x)dx.dx/f(x)>=(b-a
-
设函数f(x)在[a,b]上连续,∫[a,b]f(x)dx=∫ [a,b]xf(x)dx=0
-
定积分证明题:f(x)在闭区间a到b上连续,求证:,∫b到a f(x)dx=,∫b到a f(a+b-x)dx
-
定积分证明设f(x)在〔a,b〕上连续,证明必存在ξ∈(a,b)使得(ξ-b)f(ξ)+∮(a,ξ)f(x)dx=0
-
设f(x)在[0,+∞)上连续,单调减少,0〈a〈b,求证a∫(0,b)f(x)dx≤b∫(0,a)f(x)dx
-
设函数f(x)在区间[a,b]上连续,在(a,b)内可导,且∫(a,b)f(x)dx=f(b)(b-a).证明:在(a,
-
证明题求定积分设函数F(X)在区间[a,b]上连续,单调增加,F(X)=1/(x-a)倍的{定积分f(t)dt,积分区间
-
设f(x)在区间 [a,b]上连续,证明1/(b-a)∫f(x)dx≤(1/(b-a)∫f²(x)dx)^
-
设f(x)在(a,b)上可导,且f'(x)单调,证明f'(x)在(a,b)上连续