你好不是AB向量的绝对值
是AB向量的模
解由点A(cosa,sina)和点B(1,1),
得向量AB=(1-cosa,1-sina)
故/AB/=√(1-cosa)^2+(1-sina)^2
=√(1-2cosa+cos^2a+1-2sina+sin^2a)
=√[3-2(cosa+sina)]
=√[3-2√2cos(x-π/4)]
≤√(3+2√2)
=√(√2+1)^2
=√2 +1
故AB向量的模的最大值为√2 +1.
你好不是AB向量的绝对值
是AB向量的模
解由点A(cosa,sina)和点B(1,1),
得向量AB=(1-cosa,1-sina)
故/AB/=√(1-cosa)^2+(1-sina)^2
=√(1-2cosa+cos^2a+1-2sina+sin^2a)
=√[3-2(cosa+sina)]
=√[3-2√2cos(x-π/4)]
≤√(3+2√2)
=√(√2+1)^2
=√2 +1
故AB向量的模的最大值为√2 +1.