(Ⅰ)∵f(x-4)=f(2-x),∴b=2a
∵函数f(x)的图像与直线y=x相切,∴方程组有且只有一解;
即ax2+(b-1)x=0有两个相同的实根,∴b=1,a=.
∴函数f(x)的解析式为f(x)=x2+x.(其他做法相应给分)
(Ⅱ)∵当且仅当x∈[4,m](m>4)时,f(x-t)≤x恒成立,
∴不等式f(x-t)≤x的解集为[4,m](m>4).即(x-t)2+(x-t)≤x的解集为[4,m].
∴方程(x-t)2+(x-t)=x的两根为4和m,即方程x2-2tx+t2-2t=0的两根为4和m.
∴(m>4),解得t=8,m=l2,
∴t和m的值分别为8和12.