证明:(1)当n=1时,等式左边=
1
2×4 =
1
8 ,等式右边=
1
4(1+1) =
1
8 ,∴等式成立.
(2)假设n=k(k≥1.k∈N *)时等式成立,
即
1
2×4 +
1
4×6 +
1
6×8 ++
1
2k(2k+2) =
k
4(k+1) 成立,
那么当n=k+1时,
1
2×4 +
1
4×6 +
1
6×8 ++
1
2k(2k+2) +
1
2(k+1)[2(k+1)+2]
=
k
4(k+1) +
1
4(k+1)(k+2)
=
k(k+2)+1
4(k+1)(k+2)
=
(k+1) 2
4(k+1)(k+2)
=
k+1
4[(k+1)+1]
即n=k+1时等式成立.由(1)、(2)可知,对任意n∈N *等式均成立.