已知数列{an}的前n项和为Sn,对一切正整数,点(n,Sn)都在函数f(x)=2^(x+2)-4的图像上,1 求其通项

3个回答

  • 1、

    根据题意,得

    Sn=2^(n+2)-4=4(2^n-1)

    a1=S1=4(2^1-1)=4

    an=Sn-Sn-1=4(2^n-1)-4[2^(n-1)]=4[2^n-2^(n-1)]=2(2*2^n-2^n)=2^(n+1)

    n=1时,同样成立.

    {an}的通项公式为an=2^(n+1)

    2.

    bn=anlog2(an)

    =2^(n+1)log2[2^(n+1)]

    =(n+1)2^(n+1)

    Tn=b1+b2+...+bn=2*2^2+3*2^3+...+n2^n+(n+1)2^(n+1)

    Tn/2=2*2+3*2^2+4*2^3+...+(n+1)2^n

    Tn/2-Tn=2*2+2^2+2^3+...+2^n-(n+1)2^(n+1)

    =2+2+2^2+2^3+...+2^n-(n+1)2^(n+1)

    =2+2(2^n-1)/(2-1)-(n+1)2^(n+1)

    =2+2^(n+1)-2-n2^(n+1)-2^(n+1)

    =-n2^(n+1)

    Tn/2=n2^(n+1)

    Tn=n*2^(n+2)