一道高数证明题设函数f(x)在[a,b]上可导,f(a)=f(b)=0,并存在一点c属于(a,b),使得f(c)>0,证
2个回答
f(c)>0 f(b)=0
根据什么中值定理不记得了
存在m属于(c,b),(c,b)包含于(a,b)
使得f'(m)=(f(b)-f(c))/(b-c)
相关问题
设f(x)在[a,b]上二阶可导且f'(a)=f'(b)=0,试证:存在c属于(a,b),使得If
函数f(x)在[a,b]上二阶可导,(a)=f(b)=0,F(x)=(x-a)f(x),证(a,b)上至少存在一点c,F
设函数f(x)在[a,b]上连续,在(a,b)上可导,且f(a)=f(b)=0.试证:在(a,b)内存在一点n,使得f
一道高数证明题设f(x)在[a,b]上可微,且f(a)=f(b)=0,试证,在(a,b)内存在一点ξ,使f'(ξ)=f(
设f(x)在[a,b]上连续,在(a,b)内可导,且f'(x)>0;证明存在唯一一点c属于(a,b),
设f(x)在[a,b]上连续,在(a,b)内可导,且f(a)=f(b)=0证明 存在c∈(a,b)f‘(c)+f^2(c
设f(x)在[a,b]上连续,在(a,b)内可导,且f(a)=f(b)=0证明 存在c∈(a,b)使f‘(c)+f(c)
设f(x)在(a,b)上连续,且f(a)=f(b),证明:存在点c属于(a,b)使得f(C)=f(c+b-a/2)
设函数f(x)在[a,b]上连续,在(a,b)内可导,且f′(x)≠0.试证存在ξ、η∈(a,b),使得f′(ξ)f′(
设函数f(x)在[a,b](ab)f(x)dx=0.试证:存在c属于[a,b],使f(c)=0