1.limx→∞(1-1/2x)^x 2.limx→∞(1﹢x/x)^2x 3.limx→∞(1+1/x+3)^x 4.

1个回答

  • 1、

    limx→∞ (1- 1/2x)^x

    =limx→∞ [(1- 1/2x)^(-2x) ]^(-1/2)

    显然limx→∞ (1- 1/2x)^(-2x)=e,

    故limx→∞ [(1- 1/2x)^(-2x) ]^(-1/2) =e^(-1/2)

    2、

    limx→∞(1+x/x)^2x

    =limx→∞ [(1+ 1/x)^x]^2 显然limx→∞ (1+ 1/x)^x=e

    故原极限=e^2

    3、

    limx→∞(1+1/x+3)^x

    =limx→∞(1+ 1/x+3)^[(x+3) *x/(x+3)]

    =limx→∞ [(1+ 1/x+3)^(x+3)] ^ x/(x+3)

    显然limx→∞ (1+ 1/x+3)^(x+3)=e,

    而limx→∞ x/(x+3)=1

    故原极限= e

    4、

    令1/x=t,

    limx→0 (1+2x)^1/x

    =limt→∞ (1+2/t)^ t

    =limt→∞ [(1+2/t)^ t/2]^2

    显然limt→∞ (1+2/t)^ t/2=e,

    故原极限= e^2