证明:
全过程只需一条性质:
三角形中线把三角形分成面积相等的两部分.
S(DMC)
=S(ABCD)-S(AMD)-S(BMC)
=[(1/2)S(ABCD)-S(AMD)]+[(1/2)S(ABCD)-S(BMC)]
首先看前一个中括号中
(1/2)S(ABCD)
=(1/2)[S(ABD)+S(BDC)]
=(1/2)S(ABD)+(1/2)S(BDC)
=S(AMD)+S(BCN)
所以(1/2)S(ABCD)-S(AMD)
=S(AMD)+S(BCN)-S(AMD)
=S(BCN)
同理后一个中括号
(1/2)S(ABCD)-S(BMC)
=S(ADN)
综上所述
S(DMC)
=S(ADN)+S(BCN)
两边同时减去S(DQN)+S(PCN):
S(MQNP)
S(DMC)-[S(DQN)+S(PCN)]
=[S(ADN)-S(DQN)]+[S(BCN)-S(PCN)]
=S(AQD)+S(BPC)
证毕.