复合函数的导数:
y’=1/根号下(a^2-x^2)
+x*{[(a^2-x^2)^(-1/2)]'}
[(a^2-x^2)^(-1/2)]'
=(-1/2)*[(a^2-x^2)^(-3/2)]*[(a^2-x^2)']
=x[(a^2-x^2)^(-3/2)]
所以
y’=1/根号下(a^2-x^2)
+(x^2)*[(a^2-x^2)^(-3/2)]
复合函数的导数:
y’=1/根号下(a^2-x^2)
+x*{[(a^2-x^2)^(-1/2)]'}
[(a^2-x^2)^(-1/2)]'
=(-1/2)*[(a^2-x^2)^(-3/2)]*[(a^2-x^2)']
=x[(a^2-x^2)^(-3/2)]
所以
y’=1/根号下(a^2-x^2)
+(x^2)*[(a^2-x^2)^(-3/2)]