1、
a1+2a2+3a3+.+nan=2^n (1)
a1+2a2+3a3+.+(n-1) a(n-1)=2 ^(n-1) (2)
(1)-(2)
nan=2^n-2 ^(n-1),
nan=2 ^(n-1),
{an}的通项公式为an= 2 ^(n-1)/n.
2、
bn=n^2an=n* 2 ^(n-1).
Sn=b1+b2+...+bn
Sn=1+2*2+3*2^2+……+ n* 2 ^(n-1),
所以2Sn =1*2+2*2^2+……+ (n-1)* 2 ^(n-1) +n* 2 ^n,
以上两式相减得:
- Sn=1+2+2^2+2^3+……+2^(n-1) -n* 2 ^n,
- Sn=1*(1-2^n)/(1-2) -n* 2 ^n,
- Sn=2^n-1-n* 2 ^n,
- Sn=(1-n)*2^n-1
Sn=( n -1)*2^n+1.