设球心为O,三点为A,B,C.
则OA =OB = OC = R.
由A,B球面距离为πR/3,有∠AOB = π/3.
故△AOB为等边三角形,AB = OA = R.
同理BC = R,CA = R.
于是△ABC也为边长R的等边三角形.
其外接圆周长为4π,即外接圆半径r = 2.
由正弦定理,R = AB = 2rsin∠BCA = 2rsin(π/3) = 2√3.
设球心为O,三点为A,B,C.
则OA =OB = OC = R.
由A,B球面距离为πR/3,有∠AOB = π/3.
故△AOB为等边三角形,AB = OA = R.
同理BC = R,CA = R.
于是△ABC也为边长R的等边三角形.
其外接圆周长为4π,即外接圆半径r = 2.
由正弦定理,R = AB = 2rsin∠BCA = 2rsin(π/3) = 2√3.