解题思路:(1)利用已知得出A,B点坐标,进而利用待定系数法得出a,b的值;
(2)已知MN=d,PF=t,由图可知MN=MF+FN,不妨将MF和FN用PF代替,即可得到MN与PF的关系:利用45°的直角三角形和平行线性质可推得FN=PF=t,∠MPF=∠BOD,再利用tan∠BOD=tan∠MPF,得[BD/OD]=[MF/PF]=3,从而有MF=3PF=3t,从而得出d与t的函数关系;
(3)过点N作NH⊥QR于点H,由图象可知R点横坐标为OC-HN,纵坐标为CN-RH.OC=OA-AC,其中OA已知,利用S△ACN=S△PMN求得AC=2t,再将用t表示的M点坐标代入抛物线解析式求得t值,即得AC的值,又由(2)中AC=CN,可知CN,则求得HN和RH的值是关键.根据tan∠HNR=tan∠NOC,可得[RH/HN]=[CN/OC]=[1/3],设RH=n,HN=3n,勾股定理得出RN的值,再利用已知条件证得△PMQ∽△NBR,建立比例式求得n值,即可得出HN和RH的值,从而得到R的坐标.
(1)∵y=-x+4与x轴交于点A,
∴A(4,0),
∵点B的横坐标为1,且直线y=-x+4经过点B,
∴B(1,3),
∵抛物线y=ax2+bx经过A(4,0),B(1,3),
∴
16a+4b=0
a+b=3,
解得:
a=−1
b=4,
∴a=-1,b=4;
(2)如图,作BD⊥x轴于点D,延长MP交x轴于点E,
∵B(1,3),A(4,0),
∴OD=1,BD=3,OA=4,
∴AD=3,
∴AD=BD,
∵∠BDA=90°,∠BAD=∠ABD=45°,
∵MC⊥x轴,∴∠ANC=∠BAD=45°,
∴∠PNF=∠ANC=45°,
∵PF⊥MC,
∴∠FPN=∠PNF=45°,
∴NF=PF=t,
∵∠PFM=∠ECM=90°,
∴PF∥EC,
∴∠MPF=∠MEC,
∵ME∥OB,∴∠MEC=∠BOD,
∴∠MPF=∠BOD,
∴tan∠BOD=tan∠MPF,
∴[BD/OD]=[MF/PF]=3,
∴MF=3PF=3t,
∵MN=MF+FN,
∴d=3t+t=4t;
(3)如备用图,由(2)知,PF=t,MN=4t,
∴S△PMN=[1/2]MN×PF=[1/2]×4t×t=2t2,
∵∠CAN=∠ANC,
∴CN=AC,
∴S△ACN=[1/2]AC2,
∵S△ACN=S△PMN,
∴[1/2]AC2=2t2,
∴AC=2t,
∴CN=2t,
∴MC=MN+CN=6t,
∴OC=OA-AC=4-2t,
∴M(4-2t,6t),
由(1)知抛物线的解析式为:y=-x2+4x,
将M(4-2t,6t)代入y=-x2+4x得:
-(4-2t)2+4(4-2t)=6t,
解得:t1=0(舍),t2=[1/2],
∴PF=NF=[1/2],AC=CN=1,OC=3,MF=[3/2],PN=
点评:
本题考点: 二次函数综合题;勾股定理;相似三角形的应用.
考点点评: 此题主要考查了待定系数法求二次函数解析式以及相似三角形的判定与性质和勾股定理等知识,得出△PMQ∽△NBR,进而得出n的值是解题关键.