证明:(1)∵正方形ABCD,
∴∠A=∠EBH=90°,AD=BC,
∵E是AB的中点,
∴AE=BE,
∵∠AED=∠BEH,
∴△AED≌△BEH,
∴AD=BH,
∴BC=BH,即点B为CH的中点,
又点M为CG的中点,
∴BM为△CGH的中位线,
∴BM∥GH.
(2)∵四边形ABCD为正方形,
∴AB=AD=CD,∠A=∠ADC=90°,
又∵点E、F分别是边AB、AD的中点,
∴AE=1/2 AB,DF=1/2AD,
∴AE=DF,
∴△AED≌△DFC,
∴∠ADE=∠DCF,
∵∠ADE+∠CDE=90°,
∴∠DCF+∠CDE=90°,∴∠CGH=90°,
∵BM∥GH,
∴∠CMB=∠CGH=90°,
∴BM⊥CF.