解题思路:如图所示,一、棱长为3的正方体的每个面等分成9个小正方形,那么每个小正方形的边长是1,所以每个小正方面的面积是1;二、正方体的一个面有9个小正方形,挖空后,这个面的表面积增加了4个小正方形,即:每个面有12个小正方形,6个面就是6×12=72个,那么几何体的表面积为72×1=72.
如图所示,周边的六个挖空的正方体每个面增加4个正方形,且减少了1个正方形,则每个面的正方形个数为12个,则表面积为12×6×1=72.
故选B.
点评:
本题考点: 几何体的表面积.
考点点评: 本题关键要能够想象出物体表面积的变化情况,主要考查空间想象能力.