数列{an}中,an+1-4an+4an-1=0 (n≥2),a1=1,bn=an+1-2an
2个回答
a(n+1) - 2a(n)=2( a(n) - a(n-1) )
b(n) = 2b(n-1) = 2^(n-1)*b1
相关问题
数列{an}满足a1=1,a2=2,an=1/2(an-1+an-2)(n=3,4...),数列{bn}满足bn=an+
数列{An}中A1=4,An=4-4/A(n-1)[n≥2],令Bn=1/(An-2).
在数列{an}中,a1=1,a(n+1)=1-(1)/(4an),bn=(2)/(2an-1),其中n在数列{an}中,
数列{an}.a1=4,an=4-4/an-1(n>1),bn=1/(an-2),证明数列{bn}是等差数列,及求出数列
急,在数列{an}中,已知a1=2,a(n+1)= (2an-1)/(an+4),bn=1/(an+1) 求证:{bn}
已知数列{an}中,a1=2,an+1=4an-2/3an-1 bn=3an-2/an-1 求证;数列{bn}是等比数列
数列{an}与{bn}满足关系:a1=2,a(n+1)=(an^2+1)/2an,bn=(an+1)/(an-1).(n
数列{An}{Bn}满足下列条件:A1=0,A2=1,An+2=An+An+1/2,Bn=An+1-An
已知a1=1,a2=4,an+2=4an+1+an,bn=an+1an,n∈N*
已知数列an,a1=1,an+2a(n+1)+6n+4=0,若bn=an+2n,(1)求证bn是等比数列(2)求数列an