设x,y,z≥0,且x+y+z=1,求证:0≤xy+yz+xz-2xyz≤7/27
1个回答
观察到方程对称故假定x>=y>=z,将三元转化成一元,x+y=k+1/3,z=1/3-k,k属于[0,1/3]
带入化解即可
相关问题
设x,y,z∈R+,xy+yz+xz=1,证明不等式:(xy)^2/z+(xz)^2/y+(yz)^2/x+6xyz≥x
若实数xyz满足(x-2y+z)^2+4(x-y)(y-z)=0 A xy-yz=0 B xy+yz=0 C xy-xz
1.已知xyz≠0,xy=2(x+y),yz=3(y+z),xz=4(x+z),求(xy)/z的值
已知x2+y2+z2-xy-yz-xz=0,求证x=y=z
xyz-xy-xz+x-yz+y+z-1因式分解
设(y+z)/a^2=(z+x)/b^2=(x+y)/c^2,且xy+yz+zx=0,xyz≠0,求证:(a+b+c)(
设:(y+z)/a^2=(z+x)/b^2=(x+y)/c^2,且xy+yz+zx=0,xyz≠0.求证:(a+b+c)
已知x2-yz=y2-xz=z2-xy,求证:x=y=z或x+y+z=0.
分式题:xy=x+y,yz=2(y+z),zx=3(z+x),求xyz/(xy+yz+xz)
已知x+y+z=1,xy+yz+zx=xyz,求证:(1-x)(x+yz)=0 ,(1-y)(y+zx)=0,(1-z)