解题思路:本题中可根据图形分别得出n=1,2,3,4时的小屋子需要的点数,然后找出规律得出第n个时小屋子需要的点数,然后将41代入求得的规律即可求得有多少个点.
依题意得:(1)摆第1个“小屋子”需要5个点;
摆第2个“小屋子”需要11个点;
摆第3个“小屋子”需要17个点.
当n=n时,需要的点数为(6n-1)个.
令6n-1=41,
得n=7.
故选C.
点评:
本题考点: 规律型:图形的变化类.
考点点评: 考查了规律型:图形的变化,本题是一道找规律的题目,这类题型在中考中经常出现.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.