可你线性变换,几何意义,其实是实现了函数的平移,旋转,所以没改变参数,和性质.
比如二次型化为标准型的过程中,
原方程
f=XAX'
转化后
f=YKY'
其中K是与A相似的对角阵.X=CY,C是单位正交矩阵.
X=CY,只是实现了从X坐标系转换到了Y坐标系,但是表征参数的矩阵,从A变成了K,可是他们的特征值是一样的,所以两个函数图象的参数是不变的.
可你线性变换,几何意义,其实是实现了函数的平移,旋转,所以没改变参数,和性质.
比如二次型化为标准型的过程中,
原方程
f=XAX'
转化后
f=YKY'
其中K是与A相似的对角阵.X=CY,C是单位正交矩阵.
X=CY,只是实现了从X坐标系转换到了Y坐标系,但是表征参数的矩阵,从A变成了K,可是他们的特征值是一样的,所以两个函数图象的参数是不变的.