(1)设M(x,y)
2√[(x-2)^2+y^2]=√[(x-8)^+y^2]
4x^2-16x+16+4y^2=x^2-16x+64+y^2
3x^2+3y^2=48
x^2+y^2=16
(2)设M(x,y) N(x0,y0)
N为AM中点
(x+2)/2=x0 y/2=y0
x=2x0-2 y=2y0
带入轨迹方程得x0^2+y0^2-2x0=11
即点N的轨迹为x^2+y^2-2x=11
(1)设M(x,y)
2√[(x-2)^2+y^2]=√[(x-8)^+y^2]
4x^2-16x+16+4y^2=x^2-16x+64+y^2
3x^2+3y^2=48
x^2+y^2=16
(2)设M(x,y) N(x0,y0)
N为AM中点
(x+2)/2=x0 y/2=y0
x=2x0-2 y=2y0
带入轨迹方程得x0^2+y0^2-2x0=11
即点N的轨迹为x^2+y^2-2x=11